skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dhulipala, Laxman"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 11, 2027
  2. Free, publicly-accessible full text available July 16, 2026
  3. Free, publicly-accessible full text available July 16, 2026
  4. Free, publicly-accessible full text available July 16, 2026
  5. Free, publicly-accessible full text available June 5, 2026
  6. Free, publicly-accessible full text available March 1, 2026
  7. Free, publicly-accessible full text available December 1, 2025
  8. We study the problem of dynamically maintaining the connected components of an undirected graph subject to edge insertions and deletions. We give the first parallel algorithm for the problem that is work-efficient, supports batches of updates, runs in polylogarithmic depth, and uses only linear total space. The existing algorithms for the problem either use super-linear space, do not come with strong theoretical bounds, or are not parallel. On the empirical side, we provide the first implementation of the cluster forest algorithm, the first linear-space and polylogarithmic update time algorithm for dynamic connectivity. Experimentally, we find that our algorithm uses up to 19.7× less space and is up to 6.2× faster than the level-set algorithm of Holm, de Lichten-berg, and Thorup, arguably the most widely-implemented dynamic connectivity algorithm with strong theoretical guarantees. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  9. We introduce the ParClusterers Benchmark Suite (PCBS)---a collection of highly scalable parallel graph clustering algorithms and benchmarking tools that streamline comparing different graph clustering algorithms and implementations. The benchmark includes clustering algorithms that target a wide range of modern clustering use cases, including community detection, classification, and dense subgraph mining. The benchmark toolkit makes it easy to run and evaluate multiple instances of different clustering algorithms with respect to both the running time and quality. We evaluate the PCBS algorithms empirically and find that they deliver both the state of the art quality and the running time. In terms of the running time, they are on average over 4x faster than the fastest library we compared to. In terms of quality, the correlation clustering algorithm [Shi et al., VLDB'21] optimizing for the LambdaCC objective, which does not have a direct counterpart in other libraries, delivers the highest quality in the majority of datasets that we used. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025